Classifying Ayurvedic Pulse Signals Via Consensus Locally Linear Embedding

نویسندگان

  • Amod Jog
  • Aniruddha J. Joshi
  • Sharat Chandran
  • Anant Madabhushi
چکیده

In this paper, we present a novel method for analysis of Ayurvedic pulse signals via a recently developed nonlinear dimensionality reduction scheme called Consensus Locally Linear Embedding (C-LLE). Pulse Based Diagnosis (PBD) is a prominent method of disease detection in Ayurveda, the system of Indian traditional medicine. Ample anecdotal evidence suggests that for several conditions, PBD, based on sensing changes in the patient’s pulse waveform, is superior to conventional allopathic diagnostic methods. PBD is an inexpensive, non-invasive, and painless method; however, a lack of quantification and standardization in Ayurveda, and a paucity of expert practitioners, has limited its widespread use. The goal of this work is to develop the first Computer-Aided Diagnosis (CAD) system able to distinguish between normal and diseased patients based on their PBD. Such a system would be inexpensive, reproducible, and facilitate the spread of Ayurvedic methods. Digitized Ayurvedic pulse signals are acquired from patients using a specialized pulse waveform recording device. In our experiments we considered a total of 50 patients. The 50 patients comprised of two cohorts obtained at different frequencies. The first cohort comprised 24 patients that were normal or diseased (slipped disc (backache), stomach ailments) while the second consists of a set of 26 patients who were normal or diseased (diabetic, with skin disorders, slipped disc (backache) and stress related headaches). In this study, we consider the C-LLE scheme which non-linearly projects the high-dimensional Ayurvedic pulse data into a lower dimensional space where a consensus clustering scheme is employed to distinguish normal and abnormal waveforms. C-LLE differs from other linear and nonlinear dimensionality reduction schemes in that it respects the underlying nonlinear manifold structure on which the data lies and attempts to directly estimate the pairwise object adjacencies in the lower dimensional embedding space. A major contribution of this work is that it employs non-Euclidean similarity measures such as mutual information and relative entropy to estimate object similarity in the high-dimensional space which are more appropriate for measuring the similarity of the pulse signals. Our C-LLE based CAD scheme results in a classification accuracy of 80.57% using relative entropy as the signal distance measure in distinguishing between normal and diseased patients for the first cohort, based on their Ayurvedic pulse signal. For the 500Hz data we got a maximum of 88.34% accuracy with C-LLE and relative entropy as a distance measure. Furthermore, C-LLE was found to outperform LLE, Isomap, PCA across multiple distance measures for both cohorts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biomedical Signals

Previous work in biomedical signal processing area, especially in the area of cardiology indicates that most of the disorders in heart can be completely captured in an Electrocardiogram (ECG) signal and then can be classified using a classifying tool. A pulse signal (Nadi, in Ayurvedic terms) can also extract similar disorders along with the arterial blockages in the body. Similar methodology, ...

متن کامل

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine

The locally linear embedding (LLE) algorithm is an unsupervised technique recently proposed for nonlinear dimensionality reduction. In this paper, we describe its supervised variant (SLLE). This is a conceptually new method, where class membership information is used to map overlapping high dimensional data into disjoint clusters in the embedded space. In experiments, we combined it with suppor...

متن کامل

Consensus-Locally Linear Embedding (C-LLE): Application to Prostate Cancer Detection on Magnetic Resonance Spectroscopy

Locally Linear Embedding (LLE) is a widely used non-linear dimensionality reduction (NLDR) method that projects multi-dimensional data into a low-dimensional embedding space while attempting to preserve object adjacencies from the original high-dimensional feature space. A limitation of LLE, however, is the presence of free parameters, changing the values of which may dramatically change the lo...

متن کامل

A Consensus Embedding Approach for Segmentation of High Resolution In Vivo Prostate Magnetic Resonance Imagery

Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benig...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009